The central limit theorem for Riesz-Raikov sums

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorem and Almost Sure Central Limit Theorem for the Product of Some Partial Sums

Let (Xn)n≥1 be a sequence of independent identically distributed (i.i.d.) positive random variables (r.v.). Recently there have been several studies to the products of partial sums. It is well known that the products of i.i.d. positive, square integrable random variables are asymptotically log-normal. This fact is an immediate consequence of the classical central limit theorem (CLT). This point...

متن کامل

On the Central Limit Theorem for Modulus Trimmed Sums

We prove a functional central limit theorem for modulus trimmed i.i.d. variables in the domain of attraction of a nonnormal stable law. In contrast to the corresponding result under ordinary trimming, our CLT contains a random centering factor which is inevitable in the nonsymmetric case. The proof is based on the weak convergence of a two-parameter process where one of the parameters is time a...

متن کامل

Limit Theorem for Sums of Random Products

We study asymptotic behavior of the sums ZN,m(β) determined by the formula ZN,m(β) = N

متن کامل

The Almost Sure Local Central Limit Theorem for the Product of Partial Sums

We derive under some regular conditions an almost sure local central limit theorem for the product of partial sums of a sequence of independent identically distributed positive random variables.

متن کامل

A note on the almost sure central limit theorem for the product of some partial sums

*Correspondence: [email protected] 2College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, 314001, P.R. China Full list of author information is available at the end of the article Abstract Let (Xn) be a sequence of i.i.d., positive, square integrable random variables with E(X1) =μ > 0, Var(X1) = σ 2. Denote by Sn,k = ∑n i=1 Xi – Xk and by γ = σ /μ the coefficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 1994

ISSN: 0178-8051,1432-2064

DOI: 10.1007/bf01204953